14,274 research outputs found

    A quasilocal calculation of tidal heating

    Full text link
    We present a method for computing the flux of energy through a closed surface containing a gravitating system. This method, which is based on the quasilocal formalism of Brown and York, is illustrated by two applications: a calculation of (i) the energy flux, via gravitational waves, through a surface near infinity and (ii) the tidal heating in the local asymptotic frame of a body interacting with an external tidal field. The second application represents the first use of the quasilocal formalism to study a non-stationary spacetime and shows how such methods can be used to study tidal effects in isolated gravitating systems.Comment: REVTex, 4 pages, 1 typo fixed, standard sign convention adopted for the Newtonian potential, a couple of lines added to the discussion of gauge dependent term

    Spectroscopic accuracy directly from quantum chemistry: application to ground and excited states of beryllium dimer

    Get PDF
    We combine explicit correlation via the canonical transcorrelation approach with the density matrix renormalization group and initiator full configuration interaction quantum Monte Carlo methods to compute a near-exact beryllium dimer curve, {\it without} the use of composite methods. In particular, our direct density matrix renormalization group calculations produce a well-depth of DeD_e=931.2 cm1^{-1} which agrees very well with recent experimentally derived estimates DeD_e=929.7±2\pm 2~cm1^{-1} [Science, 324, 1548 (2009)] and DeD_e=934.6~cm1^{-1} [Science, 326, 1382 (2009)]], as well the best composite theoretical estimates, DeD_e=938±15\pm 15~cm1^{-1} [J. Phys. Chem. A, 111, 12822 (2007)] and DeD_e=935.1±10\pm 10~cm1^{-1} [Phys. Chem. Chem. Phys., 13, 20311 (2011)]. Our results suggest possible inaccuracies in the functional form of the potential used at shorter bond lengths to fit the experimental data [Science, 324, 1548 (2009)]. With the density matrix renormalization group we also compute near-exact vertical excitation energies at the equilibrium geometry. These provide non-trivial benchmarks for quantum chemical methods for excited states, and illustrate the surprisingly large error that remains for 11Σg^1\Sigma^-_g state with approximate multi-reference configuration interaction and equation-of-motion coupled cluster methods. Overall, we demonstrate that explicitly correlated density matrix renormalization group and initiator full configuration interaction quantum Monte Carlo methods allow us to fully converge to the basis set and correlation limit of the non-relativistic Schr\"odinger equation in small molecules

    Is U3Ni3Sn4 best described as near a quantum critical point?

    Full text link
    Although most known non-Fermi liquid (NFL) materials are structurally or chemically disordered, the role of this disorder remains unclear. In particular, very few systems have been discovered that may be stoichiometric and well ordered. To test whether U3Ni3Sn4 belongs in this latter class, we present measurements of the x-ray absorption fine structure (XAFS) of polycrystalline and single-crystal U3Ni3Sn4 samples that are consistent with no measurable local structural disorder. We also present temperature-dependent specific heat data in applied magnetic fields as high as 8 T that show features that are inconsistent with the antiferromagnetic Griffiths' phase model, but do support the conclusion that a Fermi liquid/NFL crossover temperature increases with applied field. These results are inconsistent with theoretical explanations that require strong disorder effects, but do support the view that U3Ni3Sn4 is a stoichiometric, ordered material that exhibits NFL behavior, and is best described as being near an antiferromagnetic quantum critical point.Comment: 9 pages, 8 figures, in press with PR

    Quantifying structural damage from self-irradiation in a plutonium superconductor

    Full text link
    The 18.5 K superconductor PuCoGa5 has many unusual properties, including those due to damage induced by self-irradiation. The superconducting transition temperature decreases sharply with time, suggesting a radiation-induced Frenkel defect concentration much larger than predicted by current radiation damage theories. Extended x-ray absorption fine-structure measurements demonstrate that while the local crystal structure in fresh material is well ordered, aged material is disordered much more strongly than expected from simple defects, consistent with strong disorder throughout the damage cascade region. These data highlight the potential impact of local lattice distortions relative to defects on the properties of irradiated materials and underscore the need for more atomic-resolution structural comparisons between radiation damage experiments and theory.Comment: 7 pages, 5 figures, to be published in PR

    Rigorous Screened Interactions for Realistic Correlated Electron Systems

    Get PDF
    We derive a widely-applicable first principles approach for determining two-body, static effective interactions for low-energy Hamiltonians with quantitative accuracy. The algebraic construction rigorously conserves all instantaneous two-point correlation functions in a chosen model space at the level of the random phase approximation, improving upon the traditional uncontrolled static approximations. Applied to screened interactions within a quantum embedding framework, we demonstrate these faithfully describe the relaxation of local subspaces via downfolding high-energy physics in molecular systems, as well as enabling a systematically improvable description of the long-range plasmonic contributions in extended graphene

    Self-contained Kondo effect in single molecules

    Full text link
    Kondo coupling of f and conduction electrons is a common feature of f-electron intermetallics. Similar effects should occur in carbon ring systems(metallocenes). Evidence for Kondo coupling in Ce(C8H8)2 (cerocene) and the ytterbocene Cp*2Yb(bipy) is reported from magnetic susceptibility and L_III-edge x-ray absorption spectroscopy. These well-defined systems provide a new way to study the Kondo effect on the nanoscale, should generate insight into the Anderson Lattice problem, and indicate the importance of this often-ignored contribution to bonding in organometallics.Comment: 4 pages, 5 figures (eps

    Are healthcare costs from obesity associated with body mass index, comorbidity or depression? Cohort study using electronic health records

    Get PDF
    The objective of this study was to evaluate the association between body mass index (BMI) and healthcare costs in relation to obesity‐related comorbidity and depression. A population‐based cohort study was undertaken in the UK Clinical Practice Research Datalink (CPRD). A stratified random sample was taken of participants registered with general practices in England in 2008 and 2013. Person time was classified by BMI category and morbidity status using first diagnosis of diabetes (T2DM), coronary heart disease (CHD), stroke or malignant neoplasms. Participants were classified annually as depressed or not depressed. Costs of healthcare utilization were calculated from primary care records with linked hospital episode statistics. A two‐part model estimated predicted mean annual costs by age, gender and morbidity status. Linear regression was used to estimate the effects of BMI category, comorbidity and depression on healthcare costs. The analysis included 873 809 person‐years (62% female) from 250 046 participants. Annual healthcare costs increased with BMI, to a mean of £456 (95% CI 344–568) higher for BMI ≥40 kg m(−2) than for normal weight based on a general linear model. After adjusting for BMI, the additional cost of comorbidity was £1366 (£1269–£1463) and depression £1044 (£973–£1115). There was evidence of interaction so that as the BMI category increased, additional costs of comorbidity (£199, £74–£325) or depression (£116, £16–£216) were greater. High healthcare costs in obesity may be driven by the presence of comorbidity and depression. Prioritizing primary prevention of cardiovascular disease and diabetes in the obese population may contribute to reducing obesity‐related healthcare costs
    corecore